脱硫复合胶粉改性沥青的制备与性能评价

陈爽周炯李佰昌方芳

(浙江省交通集团检测科技有限公司 杭州 310030)

[摘 要]利用脱硫降解复合胶粉制备新型橡胶沥青,通过各项试验筛选出最佳掺量,并与普通橡胶沥青与 SBS 改性沥青进行对比。结果表明,新型橡胶沥青的加工温度低、周期短、绿色环保、节约成本,与 SBS 改性沥青的各项指标相当,混合料指标优异,具有良好的应用前景,适合大范围推广。

[关键词] 脱硫; 胶粉; 橡胶沥青; 改性沥青; 复合; 混合料

0 引言

我国废旧轮胎产生量每年都在高速增长, 预计到 2020 年以后, 我国废旧轮胎的累积量将 居全球第一, 但是橡胶作为一种高分子材料, 埋在地下数百年也不会降解, 对环境造成了严 重的威胁[1-2]。将废旧轮胎加工成橡胶粉并用于 沥青路面改性是全世界公认的对其无害化、资 源化处理的最佳途径之一。橡胶沥青经过多年 的发展,由于其良好的耐温变、抗疲劳、抗滑、 降噪等性能已成为多个国家和地区最常用的铺 面材料之一[3-4]。但是橡胶沥青领域仍有许多需 要解决的问题:①橡胶颗粒在沥青中易离析: ②橡胶沥青高温粘度大, 拌合困难; ③橡胶沥 青高温储存稳定性差[5]。近年来,科研工作者 们认为对橡胶颗粒进行脱硫处理是解决上述问 题较为有效的方法。本研究利用脱硫复合胶粉 制备新型橡胶沥青,有效改善了橡胶沥青的热 储存稳定性能、大大缩短加工周期,同时其耐 老化性能也有明显提升,是一种非常有前景的 橡胶改性沥青材料。

1 试验部分

1.1 试验原料

选取了四种不同类型的胶粉进行对比,这四种胶粉的特征如表1所示,基质沥青选用埃索70#沥青。

表 1 不同类型胶粉的特征

	胶粉特征
胶粉-1	80 目未经处理胶粉
胶粉-2	降解处理、掺碳酸钙
胶粉-3	脱硫、降解程度低
胶粉-4	脱硫、复合胶粉、降解程度高

1.2 橡胶沥青制备

不同类型胶粉改性沥青对应的制备条件如 表 2 所示。

表 2 不同类型胶粉改性沥青的制备条件

胶粉类型	制备温度	制备条件
<u></u> 胶粉-1	195 °C	剪切4小时,搅拌4小时
胶粉-2	185 °C	剪切1小时,搅拌3小时
胶粉-3	185 °C	剪切1小时,搅拌3小时
胶粉-4	180 °C	剪切30分钟,搅拌2小时

1.3 测试方法

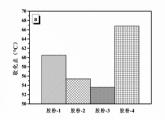
改性沥青及其混合料检测方法是按照交通部行业标准 JTG E20—2011《公路工程沥青及沥青混合料试验规程》进行。

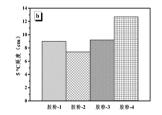
2 试验结果

2.1 胶粉类型对橡胶沥青性能的影响

采用不同废胎胶粉加工得到的橡胶沥青性能试验结果如表 3 所示,所有胶粉的掺量均为 20% (外掺)。从图 1 和表 3 中可以清楚地看到,用胶粉-4 改性的橡胶沥青延度和软化点均

收稿日期: 2019-12-05


作者简介: 陈爽(1992-), 男, 助理工程师, 主要从事道路新材料研究开发工作。


最高,针入度最低,综合性能最优。除此之外, 胶粉-4 改性沥青的加工周期更短,温度更低。 因此,无论是从改性沥青的性能还是制备工艺 而言,胶粉-4 都具有很大的优势。这主要是由 于胶粉-4 是经过特殊处理的脱硫复合胶粉,分 子链之间的硫键交联网络点已断裂,分子间作 用力变小,其大分子链在沥青基质中更为舒展, 高温条件下,沥青的轻质组分更容易进入到胶 粉大分子链间,易于胶粉的溶胀和分散,因此

胶粉-4 在基质沥青中充分溶胀后,几乎没有细小碎屑残留,形成的橡胶沥青性能更优。而普通的胶粉由于其分子链间仍存在交联网络,分子间作用力很大,沥青的轻质组分只有少量参与了溶胀过程,因此胶粉的溶胀与分散效果较差,在基质沥青中有大量细小的碎屑残留,导致加工过程中黏度很大,制备的橡胶沥青稳定性不够,性能也较差^[6-8]。

表 3 不同废胎胶粉加工得到的橡胶沥青试验结果

		胶粉			
测试项目	胶粉-1	胶粉-2	胶粉-3	胶粉-4	检测方法
针入度 (25 °C, 100 g, 5s) /0.1 mm	55. 6	53. 7	57. 9	49. 2	T0604—2011
延度 (5 cm/min, 5 °C) /cm	9.0	7.4	9. 2	12. 7	T0605—2011
软化点 (环球法) /°C	60. 5	55. 4	53.6	66. 8	T0606—2011
135 °C 布氏黏度 (mPa·s)	15875	2115	1820	2083	T0625—2011

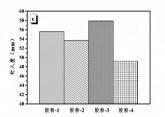


图 1 不同废胎胶粉加工得到的橡胶沥青试验结果 (a) 软化点, (b) 延度, (c) 针入度

2.2 胶粉掺量对橡胶沥青性能的影响

在外掺胶粉-4作为主要改性剂的基础上,为了进一步改善橡胶沥青的高温性能,选择外掺 2%的 SBS 和 2%的促溶剂以及 0.1%的硫磺作为复合改性剂加入。从表 4 的试验结果可以看出,随着胶粉的掺量增加,橡胶沥青的 135°C 布氏黏度和软化点随之增加,而针入度和 5°C 延度随之下降。这是由于当胶粉掺量较少的时候,胶粉对沥青饱和分和芳香分这两种轻质组

分的吸收使得沥青逐渐变得粘稠,并有了较好的弹性和延度,但是随着胶粉掺量增多,而沥青的轻质组分较少,过量的胶粉无法充分地溶解和溶胀,胶粉大分子链段间距离减小,摩擦力增大,滑移困难,从而导致沥青的黏度增加,过高的粘度会给沥青的泵送以及混合料的拌合摊铺带来困难。因此,考虑到改性效果和施工的难度,胶粉的外掺量控制在18%为宜。

表 4 不同胶粉掺量橡胶沥青技术指标

测试项目		胶粉掺量	检测方法		
洲	15	18	20	25	位侧刀
针入度 (25 °C, 100 g, 5s) /0.1 mm	60. 7	55. 4	50. 8	47. 7	T0604—2011
延度 (5 cm/min, 5 °C) /cm	22. 8	26. 8	27. 5	28. 2	T0605—2011
软化点 (环球法) /°C	90. 4	93.7	96. 5	97. 1	T0606—2011
135 °C 布氏黏度 (mPa·s)	2765	3365	4442	5120	T0625—2011

2.3 促溶剂掺量对橡胶沥青性能的影响

为了进一步优化橡胶沥青的性能,使其有更高的延度和加工性能,因此通过固定外掺18%的胶粉-4、2%的 SBS 和 0.1%的硫磺,并改变促溶剂的掺量来讨论促进剂对橡胶沥青性能的影响。促溶剂的主要成分为芳香烃,与沥青中轻质组分的成分相近,因此加入适量的促溶剂后,胶粉的溶胀过程能够更加充分,赋予

沥青更高的弹性。从表 5 的试验结果可以看到,随着促溶剂掺量的增加,橡胶沥青的延度明显增大,135°C 布氏黏度随之减小。但是,也不难发现,当促溶剂掺量为 6%时,橡胶沥青的针入度大大升高,软化点也有所降低,体系变得不够稳定,因此综合试验结果可以得出,促溶剂的掺量为 4%时为宜。

表 5 橡胶沥青技术指标 (不同掺量促溶剂)

		促溶剂掺量(9	检测方法	
例瓜坝日	2	4	6	位侧刀伍
针入度 (25 °C, 100 g, 5s) /0.1 mm	55. 4	61. 3	69. 8	T0604—2011
延度 (5 cm/min, 5 °C) /cm	26. 8	35. 9	38. 7	T0605—2011
软化点 (环球法) /°C	93. 7	92. 5	87. 2	T0606—2011
135 °C 布氏黏度 (mPa·s)	3365	3075	2667	T0625—2011

2.4 不同改性沥青指标对比分析

综合上述的几个试验结果,筛选出了相对性能最优的橡胶沥青配方(胶粉-4:18%、SBS:2%、促溶剂4%、硫磺0.1%),与SBS改性沥青(埃索70#+5%SBS)和普通橡胶沥青(埃索70#+20%胶粉-1)的各项指标进行对比分析。从表6的对比结果可以看出,新型橡胶

沥青的各项指标均与优于普通橡胶沥青,与 SBS 改性沥青相近,而且软化点更高。这主要是由于脱硫复合胶粉颗粒能够均匀分散在基质沥青中,橡胶大分子链自然蜷曲摺叠形成网络结构将沥青包裹在其中。同时,胶粉颗粒在沥青的轻质组分中充分溶胀,使得沥青质的相对含量增加,增强了其抵抗外力的能力。

表 6 不同改性沥青的性能对比

检验项目	5%内掺量 SBS 改性沥青	新型橡胶 沥青	普通橡胶 沥青	检测方法
针入度 (25 °C, 100 g, 5s) (0.1 mm)	58	61. 3	55. 6	T0604—2011
延度 (5 cm/min, 5 °C) (cm)	38	35. 9	9. 0	T0605—2011
软化点 (TR&B) (°C)	86. 0	92. 5	60. 5	T0606—2011
运动粘度 (135°C) (Pa·s)	2. 3	3	15. 9	T0619—2011
离析, 48 h 软化点差 (°C)	0. 5	3. 2	7	T0661—2011
TFOT 针入度比 (25°C) (%)	77	77	73	T0604—2011
试验后 延度 (5 cm/min, 5 °C) (cm)	24	21. 7	8	T0605—2011

3 橡胶沥青混合料性能的研究

我国橡胶沥青大多采用 AC 级配,不仅有利于提升橡胶沥青的高温稳定性,还可以有效降低油石比和施工过程中的回弹变形。为配合实

际施工情况,本试验亦选取此级配,筛选各档集料,合成最接近 AC-13 的级配中值作为试验用级配,合成级配见表 7 和图 3,并按照 4.9%的油石比进行马歇尔试验。

表 7 试验采用合成级配

通过下列筛孔 (mm) 的质量百分率/%										
筛孔孔径/mm	16	13. 2	9. 5	4. 75	2. 36	1. 18	0.6	0.3	0. 15	0. 075
AC-13 级配/%	100	93. 9	71. 2	41. 2	27. 6	18.0	12. 9	9.5	7.7	5.9

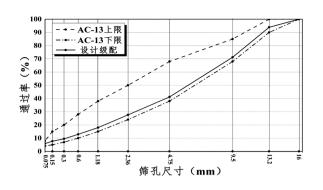


图 2 试验采用合成级配图

本试验采用马歇尔设计方法,双面击实75

次,用表干法测试件的空气中质量、水中质量和表干质量,分别计算试件的毛体积密度、沥青饱和度和矿料间隙率等体积参数。将马歇尔试件放入 60°C 水浴恒温箱中保温 30 分钟后,测定各组马歇尔试件的稳定度、流值和浸水稳定度,并与 SBS 改性沥青混合料的各项指标进行对比,结果如表 8 所示。对比发现,新型橡胶沥青和 SBS 改性沥青混合料的各项技术指标均符合路用要求,且非常接近,其中新型橡胶沥青混合料的稳定度和浸水残留稳定度均略高于 SBS 改性沥青混合料。这说明橡胶沥青与石料的粘结性能更佳,混合料的水稳定性更好。

	10	7. 阿及丘肠有比	141一场///战型汉/15	X 71 / 1 LU	
混合料体积指标	单位	SBS 改性沥青	新型橡胶沥青	技术要求	检测依据
孔隙率 VV	%	4. 6	4. 2	4-5.5	
矿料间隙率 VMA	%	14. 9	14. 7	≥14.6	
沥青饱和度 VFA	%	69. 5	70. 4	65-75	JTG E20—2011
稳定度 MS	kN	15. 43	15. 77	≥8	JIG E20—2011
流值 FL	0. 1 mm	4. 06	4. 64	2-5	
浸水残留稳定度	%	87. 8	88. 5	≥85	

表 8 不同改性沥青混合料马歇尔试验技术要求对比

4 结论

胶粉-4是一种脱硫复合改性胶粉,粒径小,结构疏松,比表面积大,在与沥青剪切的过程中能快速分散和溶胀,用于改性沥青及沥青混合料能达到良好的效果,得出以下几点结论:

- (1) 脱硫复合改性胶粉在 180°C 的条件下便能在沥青中迅速分散溶胀,较传统的橡胶改性沥青以及 SBS 改性沥青的工艺相比,加工温度低,加工周期短,储存稳定性高,更加节能环保。
- (2) 这种新型橡胶改性沥青以及改性沥青混合料的各项性能均与 SBS 改性沥青相当,其混合料的稳定度和残留浸水稳定度均略高于 SBS 改性沥青混合料。
- (3) 新型橡胶改性沥青较 SBS 改性沥青成本低廉,运输方便,储存稳定,制备工艺简单,性能优良,具有良好的应用前景,适合推广。

参考文献

- [1] 吴中华. 橡胶粉改性沥青及混合料路用性能研究 [D]. 浙江大学, 2013.
- [2] 何青蓬. PE-脱硫橡胶复合改性沥青制备及改性机理分析 [D]. 重庆交通大学, 2018.
- [3] 李海滨,盛燕萍.脱硫橡胶沥青试验研究[J].武汉理工大学学报,2013,35(05):50-54.
- [4] 董大伟,李田田,董进学,江宽,刘双旺,吴大鸣,张立群.废轮胎橡胶粉在非固化橡胶沥青防水涂料中的应用研究[J].高分子通报,2019(01):56-63.
- [5] 朱德滨. 脱硫橡胶沥青胶浆试验研究 [J]. 公路工程, 2013, 38 (04): 111-114.
- [6] 王笑风,曹荣吉.橡胶沥青的改性机理 [J]. 长安大学学报(自然科学版),2011,31 (02):6-11.
- [7] 徐思田,谢艳玲,朱亚琴,陈先华,王仕峰,马庆伟.高 胶改性沥青的性能及应用研究[J].石油沥青,2019, 33(03):54-59.
- [8] 叶奋,杨思远,吴晓羽,李硕,王仕峰.深度降解橡胶改性沥青的流变性能[J].建筑材料学报,2016,19(05):945-949.